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Exact equilibrium statistical mechanics of two particles interacting via Lennard-Jones
and Morse potentials

I. H. Umirzakov
Institute of Thermophysics, Novosibirsk 630090, Russia

~Received 14 July 1999; revised manuscript received 17 December 1999!

The exact classical statistical phase-space volume is obtained for a finite system consisting of two particles
interacting via both Lennard-Jones and Morse potentials and confined in a spherical volume. The case when the
center of mass of the system is fixed at the center of the sphere is also considered. It is shown that the
microcanonical caloric curve of the system can have properties similar to those of large clusters, and the
equation of state of the system can have behavior similar to that of bulk systems. It is also shown that the fixing
of the center of mass of the system can appreciably change the properties of the microcanonical caloric curve
and the equation of state of the system.

PACS number~s!: 05.20.2y, 05.30.2d, 05.70.Ce
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Knowing the partition function for the canonical en
semble of many particle systems it is easy to define the t
modynamic properties of the system@1,2#, but the partition
function of a system confined in a finite volume can be c
culated explicitly for the ideal gas only@1,2#. The classical
statistical partition function cannot be calculated explici
even for a two particle system with a Morse interaction p
tential in a finite volume because there is a Boltzmann ex
nent in the expression for the partition function. However
is possible to compute the quantum statistical partition fu
tion of the bound states of a free system of two partic
interacting via a Morse potential and having zero angu
momentum, because the bound quantum levels of this sys
can be obtained from a very complicated transcende
equation@3#. Therefore it is interesting to consider a micr
canonical ensemble of systems where there is no Boltzm
exponent in the expression for the classical statistical ph
space volume. The phase-space volume plays a key ro
defining the thermodynamic properties of a system in
microcanonical ensemble.

In the present work we consider a system consisting
two particles with total energyE in the volumeV. The clas-
sical statistical phase-space volume of the two particle s
tem is given by@4#

V~E,V!5cE
V
E

V
~E2U !3u~E2U !dr1 dr2 . ~1!

Here c5 1
6 (Am1m2/2p\2)3, m1 and m2 are the masses o

the particles,\ is Planck’s constant,r1 andr2 are vectors of
the coordinates of the particles, andu(x) is the Heaviside
step function@u(x)50, x<0; u(x)51, x.0]. U5u(ur1
2r2u)1uw(r 1w)1uw(r 2w) is the total interaction potential
u(ur12r2u) is the potential of interparticle interaction,r 1w
and r 2w are the distances from the particles to the wall, a
uw(r 1w) and uw(r 2w) are the interaction potentials of th
particles with the wall.

Knowing the phase-space volume, one can easily ob
the entropy, the microcanonical caloric curve, and the eq
tion of state of the system from

S~E,V!5k ln V~E,V!, ~2!
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T~E,V!5S ]S~E,V!

]E D
V

21

, ~3!

and

p~E,V!5T~E,V!S ]S~E,V!

]V D
E

, ~4!

respectively@2,4#. Herek is the Boltzmann constant,T(E,V)
is the microcanonical temperature, andp(E,V) is the pres-
sure.

We assume that the system is placed in a sphere of ra
Rs@V5(4p/3)Rs

3#, the hard core potential@uw(r )5`, 0
<r<r c ; uw(r )50, r .r c] is the interaction potential of the
particles with the wall, and the system of coordinates has
origin at the center of the sphere. We will consider the ca
when the center of mass of the system is not fixed~case A!
and when the center of mass is fixed at the center of
sphere ~case B! for the Lennard-Jones potentialu(r )
54«@(s/r )122(s/r )6# and Morse potential u(r )
5«(e22g(r 2r m)22e2g(r 2r m)), where«, s, g, andr m are the
parameters of the potentials. We will measure the energy
the distances, and the parameterg in units of«, r 0, andr 0

21,
respectively, wherer 0521/6s for the Lennard-Jones poten
tial and r 05r m for the Morse potential.

Case A. We enter the vector of the relative interpartic
distancerÄr12r2 instead ofr2 and introduce systems o
spherical coordinates forr1 and r . Integrating over the
spherical angles we obtain from Eq.~1!

V~E,V!

4pc
5F~a!u~D2a!2F~b!u~D2b!u~2E!, ~5!

where

F~x!

pr 0
6«3

5E
x2R

R

r 1dr1E
x

R1r 1
@E2u~r !#3@R22~r 2r 1!2#r dr .

~6!

Herer 15ur1u, r 5ur u, D52R, R5Rs2r c is the radius of the
sphere where the particles can move, anda and b are the
turning points:u(a)5E, u(b)5E, (a<b).
7188 ©2000 The American Physical Society
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Note that ifa andb can be explicitly expressed viaE and
parameters of the potentialu(r ) and the integral in Eq.~6!
can be calculated, then one can obtain an analytical exp
sion for the phase-space volume.

From Eq.~6! we obtain

F~x!

pr 0
6«3

5 (
n50

6

an@R f~0,3,n,x!13R f~2,1,n,x!

24R f~1,2,n,x!12R2f ~0,2,n,x!22R2f ~1,1,n,x!

2 f ~1,3,n,x!2 f ~3,1,n,x!12 f ~2,2,n,x!#, ~7!

a05E3, a156E2, a2512E23E2,

a358212E, a453E212, a556, a6521,

where

f ~ l ,m,n,x!5
Dl 1m26n122xl 1m26n12

~m26n11!~ l 1m26n12!

2xm26n11
Dl 112xl 11

~m26n11!~ l 11!

at l 1m26n12Þ0, ~8!

f ~ l ,m,n,x!52
1

l 11
ln

D

x
1

~D/x! l 1121

~ l 11!2

at l 1m26n1250,

for the Lennard-Jones potential, and

f ~ l ,m,n,x!5
eng

~ng! l 1m12 (
i 50

m
m!

~m2 i !!

3S e2ngx~ngx!m2 i
~ngD! l 112~ngx! l 11

l 11

1 (
j 50

l 1m2 i
~ l 1m2 i !!

~ l 1m2 i 2 j !!
@e2ngD~ngD! l 1m2 i 2 j

2e2ngx~ngx! l 1m2 i 2 j # D ,

f ~ l ,m,0,x!5
Dl 1m122xl 1m12

~m11!~ l 1m12!
2xm11

Dl 112xl 11

~m11!~ l 11!
, ~9!

for the Morse potential. It is necessary to put in Eq.~5! a
5(11AE11)21/6 andb5(12AE11)21/6 for the Lennard-
Jones potential, anda512(1/g)ln(11AE11) and b51
2(1/g)ln(12AE11) for the Morse potential.

Case B. We enter the vector of the center-of-mass co
dinatesR5(m1r11m2r2)/(m11m2) and the vectorr5r1
2r2 instead ofr1 andr2 and introduce a system of spheric
coordinates forr . Integrating overR and the spherical angle
we obtain from Eq.~1! that the phase-space volume is giv
by Eq. ~6!, where
s-

-

F~x!

r 0
3«3

5E
x

D

@E2u~r !#3r 2dr.

It is easy to obtain

F~x!

r 0
3«3

5 (
n50

6

an

D326n2x326n

326n
~10!

for the Lennard-Jones potential, and

F~x!

r 0
3«3

5a0

D32x3

3
1 (

n51

6

an

eng

n3g3
gn~x!, ~11!

where

gn~x!5~n2g2x212ngx12!e2ngx

2~n2g2D212ngD12!e2ngD,

for the Morse potential.
Thus we have obtained analytical expressions for the c

sical statistical phase-space volume of a system consistin
two particles interacting via both the Lennard-Jones a
Morse potentials in a spherical volume. The phase-space
ume cannot be expressed explicitly even for the one dim
sional Lennard-Jones oscillator, and it is known for t
bound states of the one dimensional Morse oscillator in
interval (2`,1`) @5#. It is also possible to compute th
quantum statistical phase-space volume of bound states
free system of two particles interacting via the Morse pot
tial and having zero angular momentum@3#. Note that exact
phase-space volumes for the same systems can also b
tained for a finite interval in one dimensional space and fo
ring in two dimensional space.

Figure 1~a! represents microcanonical caloric curves
the system for both Lennard-Jones and Morse potentials
tained from Eqs.~2!, ~3!, ~5! and ~7!–~11! at various diam-
etersD. For simplicity we use here 21/6s5r m so the minima
of the potentials are at the same distances, andg56 so the
potentials have the same curvatures at their minima. One
see that the caloric curves for case A~curves 1–4! lie below
those for case B~curves 5–8! because in case A the particle
can move in the sphere without any restriction and theref
they have more kinetic energy than in case B. At sufficien
large values ofD there is a region where temperature d
creases with increasing energy. The analysis shows tha
existence of the region is related to the influence of the
tractive forces. The greater@smaller# is the value ofD @the
density n52/(pD3/6)#, the more the region becomes e
pressed. This is due to the increase of the influence of
attractive forces with decreasing density. The region dis
pears at small values ofD.

Such a region can occur in microcanonical caloric curv
of large clusters such as Ar55 and Ar147 @6#. This region is
usually named a van der Waals type loop or ‘‘S bend’’ and
is related to the melting phenomenon~the coexistence of
liquidlike and solidlike states! in the clusters@7,8#. The suf-
ficient and necessary conditions for such loops to occur h
been obtained in@8#. In most cases the cluster is placed in t
sphere in order to keep it bonded, and the center of mas
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the cluster is fixed at the center of the sphere. We see f
Fig. 1~a! that the existence of theS bend in the caloric curve
of the cluster depends on the diameter of the sphere. Cu
2 and 6 show that theS bend can exist for case B and cann
exist for case A because the influence of the attractive fo
in case B is more than in case A.

Figure 1~b! represents caloric curves for the Morse pote
tial at various values of the parameterg and fixed value ofD.
It is known thatg21 characterizes the size of the region
action of the attractive forces. We see that the smaller
value ofg21, the more theS bend becomes expressed. T
S bend disappears at small values ofg21 ~curves 1!. Curves
2 show that theS bend can exist for case B and cannot ex
for case A.

Figure 2~a! shows the equation of state of the system
case A~the dependence of the compressibilityp/pideal on
the relative density n/n0, where n05r 0

23 and pideal

52E/3V) obtained from Eqs.~2!–~5! and Eqs.~7!–~9! for
the two potentials at various values of the energy. One
see that for the Lennard-Jones potential and the Morse
tential with g56 the compressibility grows with increasin
relative density~curves 1–3!, and this growth becomes mor
pronounced with decreasing energy~curves 1–3! and in-
creasingg21 ~solid curves 3–5; see also curves 1 and!.
Curves 7–9 show that at large values ofg21 the compress-
ibility first decreases with increasing relative density, pas
through a minimum, and then increases. This behavior of
compressibility is due to the prevalence of attractive force
low densities resulting in reduction of the pressure in co
parison with that for the ideal gas, and the prevalence

FIG. 1. Microcanonical caloric curves.~a! Solid lines corre-
spond to Morse potential withg56 and dashed lines to Lennard
Jones potential.D51.5 corresponds to curves 1 and 5,D53 to 2
and 6,D56 to 3 and 7, andD58 to 4 and 8. Curves 1–4 corre
spond to case A, and curves 5–8 to case B.~b! Morse potential,
D54; g51 corresponds to curves 1,g54 to curves 2,g56 to
curves 3, andg58 to curves 4. Solid lines correspond to case
and dashed lines to case B.
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repulsive forces at high densities resulting in rapid growth
the pressure in comparison with the pressure of the ideal
The greater the value ofg21, the more pronounced this be
havior becomes.

Figure 2~b! represents the equation of state of the syst
for case B~the dependence of the compressibilityp/pideal on
the relative densityn/n0, where pideal5E/3V) obtained
from Eqs.~2!–~5!, ~7!,~10!, and~11! for the two potentials at
various values of the energy. As one can see, the compr
ibility at low energies first decreases with increasing relat
density, passes through a minimum, and then increa
~curves 2 and 3!. This behavior becomes more pronounc
with decreasing energy~curves 2 and 3! and g21 ~solid
curves 3–5!. The existence of this behavior depends on
value ofg21 at high energies~see solid curves 1, 6, and 7!.
From comparison of curves 2–5 in Fig. 2~a! and Fig. 2~b!,
we see that the equation of state can have this behavio
case B while it cannot have this behavior in case A. T
equations of state of bulk Ar and Xe have similar behav
@9#. Figure 2~b! also shows that the role of the attractiv
forces decreases with increasing energy~see curves 1–3!.

We have obtained the exact phase-space volume fo
finite system consisting of two particles interacting via bo
Lennard-Jones and Morse potentials and confined in
spherical volume. We have shown that the microcanon
caloric curve of the system can have properties similar
those of large clusters, and the equation of state of the sys
can have behavior similar to that of the bulk. We have a
shown that fixing the center of mass of the system can
preciably change the properties of the microcanonical cal
curve and the equation of state of the finite system.

FIG. 2. Equation of state: solid lines correspond to Morse
tential and dashed lines to Lennard-Jones potential.~a! case A and
~b! case B. Curve 1,g56 and E57; curve 2,g56 and E51;
curve 3,g56 andE50.2; curve 4,g52 andE50.2; curve 5,g
59 andE50.2; curve 6,g512 andE57; curve 7,g52 andE
57; curve 8,g51 andE57; and curve 9,g52.5, andE57.
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